Project systems theory

22/01/2015, Thursday, 08:30-11:30

You are NOT allowed to use any type of calculators.
$1(10+10=20 \mathrm{pts})$

Linearization

A simplified model of a patient in the presence of an infectious disease is described by the equations

$$
\begin{align*}
\dot{\xi} & =1-\xi-\alpha \xi \eta \tag{1a}\\
\dot{\eta} & =\alpha \xi \eta-\eta-\beta \eta \tag{1b}
\end{align*}
$$

in which ξ represents the number of non-infected cells, η represents the number of infected cells, α represents the effect of the therapy and $\beta \in(0,1)$ represents the action of the immune system.

1. Consider a nonlinear system of the form $\dot{x}(t)=f(x(t))$. A (constant) vector \bar{x} is called an equilibrium point if $f(\bar{x})=0$. Determine the two equilibrium points of the system (1). Show that one equilibrium corresponds to a healthy patient, i.e. the number of infected cells is zero, and one equilibrium corresponds to an ill patient, i.e. the number of infected cells is non-zero.
2. Write the linearized models of the system (1) around the two equilibrium points.

Required Knowledge: Linearization.

SOLUTION:

(1a): The equilibrium points can be found by solving the following two equations:

$$
\begin{align*}
& 0=1-\bar{\xi}-\alpha \bar{\xi} \bar{\eta} \tag{2a}\\
& 0=\alpha \bar{\xi} \bar{\eta}-\bar{\eta}-\beta \bar{\eta} \tag{2b}
\end{align*}
$$

It follows from (2b) that

$$
\bar{\eta}=0 \quad \text { or } \quad \bar{\xi}=\frac{1+\beta}{\alpha}
$$

where $\alpha \neq 0$. Substituting these two possibilities in (2a), we obtain two equilibrium points:

$$
(\bar{\xi}, \bar{\eta})=(1,0) \quad \text { or } \quad(\bar{\xi}, \bar{\eta})=\left(\frac{1+\beta}{\alpha}, \frac{-1+\alpha-\beta}{\alpha(1+\beta)}\right)
$$

The first one represents healthy patients as $\bar{\eta}=0$ whereas the second ill patients as $\bar{\eta}>0$.
(1b): Let

$$
f_{1}(\xi, \eta)=1-\xi-\alpha \xi \eta \quad \text { and } \quad f_{2}(\xi, \eta)=\alpha \xi \eta-\eta-\beta \eta
$$

Note that

$$
\frac{\partial f_{1}}{\partial \xi}=-1-\alpha \eta, \quad \frac{\partial f_{1}}{\partial \eta}=-\alpha \xi, \quad \frac{\partial f_{2}}{\partial \xi}=\alpha \eta, \quad \frac{\partial f_{2}}{\partial \eta}=\alpha \xi-1-\beta
$$

Then, the linearization around the two equilibria found above can be given by

$$
\dot{x}=A_{i} x
$$

where

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cc}
-1-\alpha \eta & -\alpha \xi \\
\alpha \eta & \alpha \xi-1-\beta
\end{array}\right]_{(\xi, \eta)=(1,0)}=\left[\begin{array}{cc}
-1 & -\alpha \\
0 & -1+\alpha-\beta
\end{array}\right] \\
& A_{2}=\left[\begin{array}{cc}
-1-\alpha \eta & -\alpha \xi \\
\alpha \eta & \alpha \xi-1-\beta
\end{array}\right]_{(\xi, \eta)=\left(\frac{1+\beta}{\alpha}, \frac{-1+\alpha-\beta}{\alpha(1+\beta)}\right)}=\left[\begin{array}{cc}
\frac{-\alpha}{1+\beta} & -1-\beta \\
\frac{-1+\alpha-\beta}{1+\beta} & 0
\end{array}\right]
\end{aligned}
$$

Let

$$
A=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-a & -a & -a & -2
\end{array}\right]
$$

Determine all values of a such that the system $\dot{x}=A x$ stable?

Required Knowledge: Routh-Hurwitz criterion, companion form.

Solution:

As the matrix A is in the so-called companion form, its characteristic polynomial can be found as

$$
p_{A}(\lambda)=\lambda^{4}+2 \lambda^{3}+a \lambda^{2}+a \lambda+a
$$

Applying Routh-Hurwitz criterion, we get the following table:

After the first step, we see that the system is stable if and only if $a>0$ and the polynomial $4 \lambda^{3}+a \lambda^{2}+2 a \lambda+2 a$ is stable. After the second step, we see that the system is stable if and only if $a>0$ and $a-4>0$. This follows from the fact that a quadratic polynomial is stable if and only if all the coefficient have the same sign. Therefore, the system is stable if and only if $a>4$.

Consider the system $\quad \dot{x}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] x+\left[\begin{array}{l}1 \\ 1\end{array}\right] u$.

1. Is it controllable?
2. Find a nonsingular T such that

$$
T^{-1} A T=\left[\begin{array}{cc}
0 & 1 \\
\alpha & \beta
\end{array}\right] \quad T^{-1} b=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

for some real numbers α and β.
3. By using the matrix T of the previous subproblem, find a state feedback of the form $u=k^{T} x$ such that the closed loop system has poles at -1 and -2 .

REQUIRED KNOWLEDGE: Controllability and pole placement

SOLUTION:

(3a): Let the system be of the form $\dot{x}=A x+b u$. Note that

$$
\left[\begin{array}{ll}
b & A b
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
1 & 7
\end{array}\right]
$$

is of rank 2. As such, the system is controllable.
(3b): Note that

$$
\Delta_{A}(\lambda)=\operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}
\lambda-1 & -2 \\
-3 & \lambda-4
\end{array}\right|=\lambda^{2}-5 \lambda-2
$$

Define

$$
\begin{aligned}
& q_{2}=b=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& q_{1}=A b+a_{1} b=\left[\begin{array}{l}
3 \\
7
\end{array}\right]-5\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-2 \\
2
\end{array}\right] .
\end{aligned}
$$

Let

$$
T=\left[\begin{array}{ll}
q_{1} & q_{2}
\end{array}\right]=\left[\begin{array}{rr}
-2 & 1 \\
2 & 1
\end{array}\right]
$$

This leads to

$$
T^{-1}=\frac{1}{4}\left[\begin{array}{rr}
-1 & 1 \\
2 & 2
\end{array}\right]
$$

Note that

$$
\begin{aligned}
A T & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{rr}
-2 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
2 & 7
\end{array}\right] \\
T^{-1} A T & =\frac{1}{4}\left[\begin{array}{rr}
-1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
2 & 7
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
2 & 5
\end{array}\right]
\end{aligned}
$$

and

$$
T^{-1} b=\frac{1}{4}\left[\begin{array}{rr}
-1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(3c): Let $\hat{A}=T^{-1} A T$ and $\hat{b}=T^{-1} b$. Also let $\hat{k}^{T}=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]$. Note that

$$
\Delta_{\hat{A}+\hat{b} \hat{k}^{T}}(\lambda)=\lambda^{2}-\left(5+k_{2}\right) \lambda-\left(2+k_{1}\right)
$$

As we want to assign the poles at -1 and -2 , we need to solve

$$
\lambda^{2}-\left(5+k_{2}\right) \lambda-\left(2+k_{1}\right)=(\lambda+1)(\lambda+2)=\lambda^{2}+3 \lambda+2 .
$$

This results in

$$
k_{1}=-4 \quad \text { and } \quad k_{2}=-8
$$

Then, we get

$$
k^{T}=\hat{k}^{T} T^{-1}=\frac{1}{4}\left[\begin{array}{ll}
-4 & -8
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{ll}
-1 & -2
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
2 & 2
\end{array}\right]=\left[\begin{array}{ll}
-3 & -5
\end{array}\right] .
$$

Consider the system Σ given by the equations

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t) .
\end{aligned}
$$

with $x(t) \in \mathbb{R}^{n}$ and $y(t) \in \mathbb{R}^{p}$, is called output-controllable if for any $x_{0} \in \mathbb{R}^{n}$ and $y_{1} \in \mathbb{R}^{p}$ there exists an input u and a positive real number T such that $y_{u}\left(T, x_{0}\right)=y_{1}$. Show that Σ is output-controllable if and only if

$$
\operatorname{rank}\left(\begin{array}{lllll}
D & C B & C A B & \cdots & C A^{n-1} B
\end{array}\right)=p
$$

Required Knowledge: Controllability and solution of linear differential equations

Solution:

Note that

$$
y_{u}\left(T, x_{0}\right)=C e^{A T} x_{0}+\int_{0}^{T} C e^{A(T-\tau)} B u(\tau) d \tau+D u(T) .
$$

This means that the system is controllable if and only if

$$
\mathcal{V}_{T}:=\left\{\int_{0}^{T} C e^{A(T-\tau)} B u(\tau) d \tau+D u(T) \mid u \text { is integrable }\right\}=\mathbb{R}^{p} .
$$

Now, it is enough to show that

$$
\eta \in \mathcal{V}_{\vec{T}}^{\perp} \quad \text { if and only if } \quad \eta^{T} D=0 \quad \text { and } \quad \eta^{T} C A^{k} B=0 \text { for } k=0,1, \ldots, n-1 .
$$

For the 'if' part, let η be such that $\eta^{T} D=0$ and $\eta^{T} C A^{k} B=0$ for all $k=0,1, \ldots, n-1$. Note that we get

$$
\eta^{T} C e^{A t}=0 \quad \text { for all } t \geqslant 0
$$

from the latter. Thus, we have

$$
\eta^{T}\left(\int_{0}^{T} C e^{A(T-\tau)} B u(\tau) d \tau+D u(T)\right)=0
$$

for any integrable input u. Therefore, $\eta \in \mathcal{V}_{T}^{\perp}$.
For the 'only if' part, let $\eta \in \mathcal{V}_{\bar{T}}^{\perp}$. First, we claim that

$$
\begin{equation*}
\eta^{T} D=0 . \tag{3}
\end{equation*}
$$

To prove this claim, for $\varepsilon>0$ and arbitrary \bar{u} define

$$
u_{\varepsilon}(t)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leqslant t<T-\varepsilon \\
\bar{u} & \text { if } & T-\varepsilon \leqslant t \leqslant T .
\end{array}\right.
$$

Since $\eta \in \mathcal{V}_{\vec{T}}^{\perp}$, we have

$$
\eta^{T} D \bar{u}=-\eta^{T} \int_{0}^{T} C e^{A(T-\tau)} B u_{\varepsilon}(\tau) d \tau
$$

for all \bar{u} and $\varepsilon>0$. By taking the limit as ε tends to zero, we obtain

$$
\eta^{T} D \bar{u}=0
$$

since

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{T} C e^{A(t-\tau)} B u_{\varepsilon}(\tau) d \tau=0
$$

As \bar{u} arbitrary, we can conclude that (3) holds. Further, we have

$$
\eta^{T} \int_{0}^{T} C e^{A(T-\tau)} B u(\tau) d \tau=0
$$

for any integrable u. By choosing

$$
u(\tau)=B^{T} e^{A^{T}(t-\tau)} C^{T} \eta
$$

we get

$$
0=\eta^{T} \int_{0}^{T} C e^{A(T-\tau)} B u(\tau) d \tau=\int_{0}^{T}\left\|B^{T} e^{A^{T}(t-\tau)} C^{T} \eta\right\|^{2} d \tau
$$

This yields that

$$
\eta^{T} C e^{A t} B=0
$$

for all t with $0 \leqslant t \leqslant T$. By differentiating and evaluating at $t=0$, we obtain

$$
\eta^{T} C A^{k} B=0
$$

for all $k=0,1, \ldots, n-1$.

